Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome.
نویسندگان
چکیده
Eya1 is a critical gene for mammalian organogenesis. Mutations in human EYA1 cause branchio-oto-renal (BOR) syndrome, an autosomal dominant disorder characterized by varying combinations of branchial, otic and renal anomalies, whereas deletion of mouse Eya1 results in the absence of multiple organ formation. Eya1 and other Eya gene products share a highly conserved 271 amino acid Eya domain that is required for protein-protein interaction. Recently, several point mutations that result in single amino acid substitutions in the conserved Eya domain region of EYA1 have been identified in BOR patients; however, the molecular and developmental basis of organ defects that occurred in BOR syndrome is unclear. To understand how these point mutations cause disease, we have analyzed the functional importance of these Eya domain missense mutations with respect to protein complex formation and cellular localization. We have demonstrated that these point mutations do not alter protein localization. However, four mutations are crucial for protein-protein interactions in both yeast and mammalian cells. Our results provide insights into the molecular mechanisms of organ defects detected in human syndromes.
منابع مشابه
Branchio-oto-renal syndrome.
Branchio-oto-renal syndrome, a phenotype consisting of hearing loss, auricular malformations, branchial arch remnants, and renal anomalies is now recognized as one of the more common forms of autosomal dominant syndromic hearing impairment. Three loci known to be associated with the BOR phenotype have been identified and two genes that act in a regulatory network have been cloned, EYA1 and SIX1...
متن کاملBOR-Syndrome-Associated Eya1 Mutations Lead to Enhanced Proteasomal Degradation of Eya1 Protein
Mutations in the human EYA1 gene have been associated with several human diseases including branchio-oto (BO) and branchio-oto-renal (BOR) syndrome, as well as congenital cataracts and ocular anterior segment anomalies. BOR patients suffer from severe malformations of the ears, branchial arches and kidneys. The phenotype of Eya1-heterozygous mice resembles the symptoms of human patients sufferi...
متن کاملUsing Drosophila to decipher how mutations associated with human branchio-oto-renal syndrome and optical defects compromise the protein tyrosine phosphatase and transcriptional functions of eyes absent.
Eyes absent (EYA) proteins are defined by a conserved C-terminal EYA domain (ED) that both contributes to its function as a transcriptional coactivator by mediating protein-protein interactions and possesses intrinsic protein tyrosine phosphatase activity. Mutations in human EYA1 result in an autosomal dominant disorder called branchio-oto-renal (BOR) syndrome as well as congenital cataracts an...
متن کاملSipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development.
The eyes absent 1 protein (Eya1) plays an essential role in the development of various organs in both invertebrates and vertebrates. Mutations in the human EYA1 gene are linked to BOR (branchio-oto-renal) syndrome, characterized by kidney defects, hearing loss, and branchial arch anomalies. For a better understanding of Eya1's function, we have set out to identify new Eya1-interacting proteins....
متن کاملMutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations.
Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial, ear, and renal anomalies. Over 80 mutations in EYA1 have been reported in BOR. Mutations in SIX1, a DNA binding protein that associates with EYA1, have been reported less frequently. One group has recently described four missense mutations in SIX5 in five unrelated patients with BOR. Here, we report ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 10 24 شماره
صفحات -
تاریخ انتشار 2001